Let $G=(V,E,w)$ be a weighted undirected graph with $n$ vertices and $m$ edges, and fix a set of $s$ sources $S\subseteq V$. We study the problem of computing {\em almost shortest paths} (ASP) for all pairs in $S \times V$ in both classical centralized and parallel (PRAM) models of computation. Consider the regime of multiplicative approximation of $1+\epsilon$, for an arbitrarily small constant $\epsilon > 0$ . In this regime existing centralized algorithms require $\Omega(\min\{|E|s,n^\omega\})$ time, where $\omega < 2.372$ is the matrix multiplication exponent. Existing PRAM algorithms with polylogarithmic depth (aka time) require work $\Omega(\min\{|E|s,n^\omega\})$. Our centralized algorithm has running time $O((m+ ns)n^\rho)$, and its PRAM counterpart has polylogarithmic depth and work $O((m + ns)n^\rho)$, for an arbitrarily small constant $\rho > 0$. For a pair $(s,v) \in S\times V$, it provides a path of length $\hat{d}(s,v)$ that satisfies $\hat{d}(s,v) \le (1+\epsilon)d_G(s,v) + \beta \cdot W(s,v)$, where $W(s,v)$ is the weight of the heaviest edge on some shortest $s-v$ path. Hence our additive term depends linearly on a {\em local} maximum edge weight, as opposed to the global maximum edge weight in previous works. Finally, our $\beta = (1/\rho)^{O(1/\rho)}$. We also extend a centralized algorithm of Dor et al. \cite{DHZ00}. For a parameter $\kappa = 1,2,\ldots$, this algorithm provides for {\em unweighted} graphs a purely additive approximation of $2(\kappa -1)$ for {\em all pairs shortest paths} (APASP) in time $\tilde{O}(n^{2+1/\kappa})$. Within the same running time, our algorithm for {\em weighted} graphs provides a purely additive error of $2(\kappa - 1) W(u,v)$, for every vertex pair $(u,v) \in {V \choose 2}$, with $W(u,v)$ defined as above. On the way to these results we devise a suit of novel constructions of spanners, emulators and hopsets.


翻译:Lets G= (V,E,w) 美元是一个加权的非方向性图表, 以 $ 和 $, 以 美元为基数, 并固定一组美元源值 $S\ subsetequeq V$。 我们研究的是所有配对以$S\ times V$, 在传统的集中和平行的计算模式中, 对所有配对进行计算的问题 。 考虑的是 $\ epslon$, 任意的小常数 $, 利差 美元。 在这个制度下, 现有的中央算法需要 $( m) 美元( 美元) 美元, 以 美元( 美元) 的基数 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年9月3日
Arxiv
0+阅读 · 2022年9月2日
Arxiv
0+阅读 · 2022年9月1日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员