Detecting regime shifts in chaotic time series is hard because observation-space signals are entangled with intrinsic variability. We propose Parameter--Space Changepoint Detection (Param--CPD), a two--stage framework that first amortizes Bayesian inference of governing parameters with a neural posterior estimator trained by simulation-based inference, and then applies a standard CPD algorithm to the resulting parameter trajectory. On Lorenz--63 with piecewise-constant parameters, Param--CPD improves F1, reduces localization error, and lowers false positives compared to observation--space baselines. We further verify identifiability and calibration of the inferred posteriors on stationary trajectories, explaining why parameter space offers a cleaner detection signal. Robustness analyses over tolerance, window length, and noise indicate consistent gains. Our results show that operating in a physically interpretable parameter space enables accurate and interpretable changepoint detection in nonlinear dynamical systems.
翻译:在混沌时间序列中检测状态转变是困难的,因为观测空间信号与内在变异性相互纠缠。我们提出了参数空间变点检测(Param-CPD),这是一个两阶段框架:首先通过基于模拟推理训练的神经后验估计器对控制参数进行摊销贝叶斯推断,然后将标准CPD算法应用于生成的参数轨迹。在具有分段常数参数的Lorenz-63系统中,与观测空间基线相比,Param-CPD提高了F1分数,减少了定位误差,并降低了误报率。我们进一步在平稳轨迹上验证了推断后验分布的可识别性和校准性,解释了为何参数空间能提供更清晰的检测信号。对容差、窗口长度和噪声的鲁棒性分析表明该方法具有一致的性能提升。我们的结果表明,在物理可解释的参数空间中操作,能够实现非线性动力系统中准确且可解释的变点检测。