In this work, we investigate the recovery of a parameter in a diffusion process given by the order of derivation in time for some class of diffusion equations, including both classical and time-fractional diffusion equations, from the flux measurement observed at one point on the boundary. The mathematical model for time-fractional diffusion equations involves a Djrbashian-Caputo fractional derivative in time. We prove a uniqueness result in an unknown medium (e.g., diffusion coefficients, obstacle, initial condition and source) which can be seen as the recovery of the order of derivation in a diffusion process having several pieces of unknown information. The proof relies on the analyticity of the solution at large time, the asymptotic decay behavior, the strong maximum principle of the elliptic problem and suitable application of the Hopf lemma. Further we provide an easy-to-implement reconstruction algorithm based on a nonlinear least-squares formulation, and several numerical experiments are presented to complement the theoretical analysis.
翻译:在这项工作中,我们调查从边界某一点观测到的通量测量中,从某一类扩散方程式(包括古典和时间折射扩散方程式)及时测得的测算中,从一个扩散过程的测算顺序中,及时测得一个参数的恢复。时间折射方程式的数学模型及时涉及Djrbashian-Caputo的分数衍生物。我们证明一个独特的结果是一个未知的介质(例如,扩散系数、障碍、初始条件和来源),它可被视为在具有若干未知信息的扩散过程中的测算顺序的恢复。证据依据的是整个解决方案的解析性、无症状腐蚀行为、椭圆问题最强的原理以及Hopflemma的恰当应用。此外,我们提供了一种基于非线性最小方形制剂的易于执行的重整算法,并提出了若干项数字实验,以补充理论分析。