This paper study the reconstruction of High Dynamic Range (HDR) video from snapshot-coded LDR video. Constructing an HDR video requires restoring the HDR values for each frame and maintaining the consistency between successive frames. HDR image acquisition from single image capture, also known as snapshot HDR imaging, can be achieved in several ways. For example, the reconfigurable snapshot HDR camera is realized by introducing an optical element into the optical stack of the camera; by placing a coded mask at a small standoff distance in front of the sensor. High-quality HDR image can be recovered from the captured coded image using deep learning methods. This study utilizes 3D-CNNs to perform a joint demosaicking, denoising, and HDR video reconstruction from coded LDR video. We enforce more temporally consistent HDR video reconstruction by introducing a temporal loss function that considers the short-term and long-term consistency. The obtained results are promising and could lead to affordable HDR video capture using conventional cameras.
翻译:本文研究从速记LDR视频重建高动态区域视频。 制作一份《人类发展报告》视频需要恢复每个框架的《人类发展报告》值并保持连续框架的一致性。 从单个图像捕获中获取的《人类发展报告》图像,又称《人类发展报告》图像,可通过几种方式实现。例如,通过将光学元素引入相机的光学堆积,在传感器前的小对开距离放置一个编码面具,实现可重新配置的《人类发展报告》照相机;利用深层学习方法从捕获的编码图像中恢复高质量的《人类发展报告》图像。这项研究利用3D-CNNs对编码的LDR视频进行联合演示、去除音响和《人类发展报告》视频重建。我们通过引入一个考虑到短期和长期一致性的时间损失功能,实施了更加符合时间的《人类发展报告》视频重建。获得的结果很有希望,并可能导致使用常规相机以负担得起的方式获取《人类发展报告》视频。