The importance of spatial networks in the spread of an epidemic is an essential aspect in modeling the dynamics of an infectious disease. Additionally, any realistic data-driven model must take into account the large uncertainty in the values reported by official sources, such as the amount of infectious individuals. In this paper we address the above aspects through a hyperbolic compartmental model on networks, in which nodes identify locations of interest, such as cities or regions, and arcs represent the ensemble of main mobility paths. The model describes the spatial movement and interactions of a population partitioned, from an epidemiological point of view, on the basis of an extended compartmental structure and divided into commuters, moving on a suburban scale, and non-commuters, acting on an urban scale. Through a diffusive rescaling, the model allows us to recover classical diffusion equations related to commuting dynamics. The numerical solution of the resulting multiscale hyperbolic system with uncertainty is then tackled using a stochastic collocation approach in combination with a finite-volume IMEX method. The ability of the model to correctly describe the spatial heterogeneity underlying the spread of an epidemic in a realistic city network is confirmed with a study of the outbreak of COVID-19 in Italy and its spread in the Lombardy Region.
翻译:此外,任何现实的数据驱动模型都必须考虑到官方来源报告的价值的巨大不确定性,例如传染性个人的数量。在本文件中,我们通过网络上的双曲分割模型处理上述方面,在这种模型中,节点确定感兴趣的地点,例如城市或区域,弧代表主要移动路径的组合。模型从流行病学的角度,描述从扩大的区划结构、分为通勤者、在郊区移动和非通勤者、在城市规模上移动的人群的空间移动和相互作用。通过分层缩放模型,使我们能够恢复与通量动态有关的典型扩散方程式。随后,通过采用随机拼凑的混合方法,从流行病的角度,从一个流行病学的角度,描述被分割的人口的空间移动和相互作用。模型能够正确描述在城市规模下移动的亚郊区和非通勤者。通过分层缩放式缩放法,模型使我们能够恢复与通气动态有关的典型扩散方程式。随后,将采用随机混合的混合方法,用定量的混合法处理由此产生的多级超偏移系统的数字解决方案。该模型能够正确描述意大利疫情爆发的空间异性,并在现实城市网络中进行一项现实的CO网络研究。