Sampling edges from a graph in sublinear time is a fundamental problem and a powerful subroutine for designing sublinear-time algorithms. Suppose we have access to the vertices of the graph and know a constant-factor approximation to the number of edges. An algorithm for pointwise $\varepsilon$-approximate edge sampling with complexity $O(n/\sqrt{\varepsilon m})$ has been given by Eden and Rosenbaum [SOSA 2018]. This has been later improved by T\v{e}tek and Thorup [STOC 2022] to $O(n \log(\varepsilon^{-1})/\sqrt{m})$. At the same time, $\Omega(n/\sqrt{m})$ time is necessary. We close the problem, by giving an algorithm with complexity $O(n/\sqrt{m})$ for the task of sampling an edge exactly uniformly.
翻译:从亚线性时间的图表中取样边缘是一个根本性问题,也是设计亚线性时间算法的强大亚常规。 假设我们能够访问该图的顶点, 并且知道对边缘数的常数因素近似值。 需要使用 $( n/\ sqrt\ varepsilon m}) 的点值近似边缘取样算法, 复杂的 $O (n/ sqrt\ varepsilon) 和 Rosenbaum [SOSSA 2018] 。 T\v{ e} tek 和 Throup [STOC 20222] 和 $O (n\log (\ varepsilon) { 1}) /\\\ qrt{m} $。 同时, $( n/\\ qrt{m} 时间是必需的。 我们通过给复杂 $( n/ sqrt{m} 提供一种精度的算法, 来解决问题。 这个问题, 问题, 我们用 来给复杂 $( $(n/ sqrt{m} ) 来进行精确取样任务。