In this paper, we estimate the high dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator (SCIO) estimator \cite{liu2015fast} and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently.
翻译:在本文中,我们估算了在微弱的聚变条件下,许多条目几乎为零的高维精度矩阵。我们重新审视了稀疏的柱状反运算符(SCIO)测量符(cite{liu2015fast}),在微弱的聚变状态下得出其一般误差界限。我们建立了一个统一框架,以处理各种情况,包括重尾数据、非异常数据和矩阵变异数据。这些新方法可以实现与现有方法相同的趋同率,并可以高效实施。