Rossman [In $\textit{Proc. $34$th Comput. Complexity Conf.}$, 2019] introduced the notion of $\textit{criticality}$. The criticality of a Boolean function $f : \{0,1\}^n \to \{0,1\}$ is the minimum $\lambda \geq 1$ such that for all positive integers $t$, \[ \Pr_{\rho \sim \mathcal{R}_p}\left[\text{DT}_{\text{depth}}(f|_{\rho}) \geq t\right] \leq (p\lambda)^t. \] H\"astad's celebrated switching lemma shows that the criticality of any $k$-DNF is at most $O(k)$. Subsequent improvements to correlation bounds of $\text{AC}^0$-circuits against parity showed that the criticality of any $\text{AC}^0$-$\textit{circuit}$ of size $S$ and depth $d+1$ is at most $O(\log S)^d$ and any $\textit{regular}$ $\text{AC}^0$-$\textit{formula}$ of size $S$ and depth $d+1$ is at most $O\left(\frac1d \cdot \log S\right)^d$. We strengthen these results by showing that the criticality of $\textit{any}$ $\text{AC}^0$-formula (not necessarily regular) of size $S$ and depth $d+1$ is at most $O\left(\frac1d\cdot {\log S}\right)^d$, resolving a conjecture due to Rossman. This result also implies Rossman's optimal lower bound on the size of any depth-$d$ $\text{AC}^0$-formula computing parity [$\textit{Comput. Complexity, 27(2):209--223, 2018.}$]. Our result implies tight correlation bounds against parity, tight Fourier concentration results and improved $\#$SAT algorithm for $\text{AC}^0$-formulae.
翻译:罗斯曼 [$\ text{ Proc. 340美元 community{ community.}, 2019] 引入了 $:\ textitle{ 关键 $ 美元的概念。 布林函数的关键性 $ f: 0. 1\ n\ to\ 0. 1\ geq 美元, 对所有正数整数美元来说, \\ pr\ rho\ sim = mathcal{ complical} 美元 。 20199} 开始采用 $ 美元 。 comlecomt{ text{ $ litter} 美元 美元 美元 。 美元 美元 美元=== 美元 美元==== 美元 美元==== 美元。 美元== 美元=== 美元= 美元== 美元= 美元== 美元= 美元= 美元== 美元== 美元= 美元= 美元=