Dialog management (DM) is a crucial component in a task-oriented dialog system. Given the dialog history, DM predicts the dialog state and decides the next action that the dialog agent should take. Recently, dialog policy learning has been widely formulated as a Reinforcement Learning (RL) problem, and more works focus on the applicability of DM. In this paper, we survey recent advances and challenges within three critical topics for DM: (1) improving model scalability to facilitate dialog system modeling in new scenarios, (2) dealing with the data scarcity problem for dialog policy learning, and (3) enhancing the training efficiency to achieve better task-completion performance . We believe that this survey can shed a light on future research in dialog management.
翻译:对话管理(DM)是面向任务的对话系统的重要组成部分。 根据对话历史,DM预测了对话状态并决定了对话代理应采取的下一步行动。最近,对话政策学习被广泛确定为强化学习(RL)问题,更多的工作重点是DM的适用性。在本文中,我们调查了DM在三个关键主题方面的最新进展和挑战:(1) 改进模式的可扩展性,以便利对话系统在新的情景下建模,(2) 处理对话政策学习中的数据稀缺问题,(3) 提高培训效率,以更好地完成任务。 我们认为,这项调查可以揭示对话管理中的未来研究。