Introduction: The aim of our retrospective study was to quantify the impact of Covid-19 on the temporal distribution of Emergency Medical Services (EMS) demand in Travis County, Austin, Texas and propose a robust model to forecast Covid-19 EMS incidents. Methods: We analyzed the temporal distribution of EMS calls in the Austin-Travis County area between January 1st, 2019, and December 31st, 2020. Change point detection was performed to identify critical dates marking changes in EMS call distributions, and time series regression was applied for forecasting Covid-19 EMS incidents. Results: Two critical dates marked the impact of Covid-19 on the distribution of EMS calls: March 17th, when the daily number of non-pandemic EMS incidents dropped significantly, and May 13th, by which the daily number of EMS calls climbed back to 75% of the number in pre-Covid-19 time. The new daily count of the hospitalization of Covid-19 patients alone proves a powerful predictor of the number of pandemic EMS calls, with an r2 value equal to 0.85. In particular, for every 2.5 cases where EMS takes a Covid-19 patient to a hospital, one person is admitted. Conclusion: The mean daily number of non-pandemic EMS demand was significantly less than the period before Covid-19 pandemic. The number of EMS calls for Covid-19 symptoms can be predicted from the daily new hospitalization of Covid-19 patients. These findings may be of interest to EMS departments as they plan for future pandemics, including the ability to predict pandemic-related calls in an effort to adjust a targeted response.
翻译:我们的回顾性研究的目的是量化Covid-19在得克萨斯州特拉维斯州奥斯汀州紧急医疗服务需求临时分布的影响,并提出一个强有力的模型来预测Covid-19的紧急医疗服务事件。方法:我们分析了2019年1月1日至2020年12月31日奥斯汀特拉维斯州地区紧急医疗服务电话的时间分布。进行了改变点检测,以确定紧急医疗服务电话分配变化的重要日期,对预测Covid-19的紧急医疗服务事件采用了时间序列回归。结果:两个关键日期标志着Covid-19对紧急医疗服务需求分配目标呼吁的影响:3月17日,当时非大规模医疗服务事件的每日数量大幅下降;5月13日,在奥斯汀-特拉维斯州地区,紧急医疗服务电话的每日数量回升至超过Covid-19时间的75%。仅Covid-19病人住院治疗的新日统计就证明了与大流行病相关数量的一个强大的预测,值为0.85,具体来说,对于每2.5个病例,包括EMS-19的日常住院治疗计划之前,EMS的日常住院治疗时间可能比C-19的住院病人要少。