In this work, we propose to catch the complexity of the membrane potential's dynamic of a motoneuron between its spikes, taking into account the spikes from other neurons around. Our approach relies on two types of data: extracellular recordings of multiple spikes trains and intracellular recordings of the membrane potential of a central neuron. Our main contribution is to provide a unified framework and a complete pipeline to analyze neuronal activity from data extraction to statistical inference. The first step of the procedure is to select a subnetwork of neurons impacting the central neuron: we use a multivariate Hawkes process to model the spike trains of all neurons and compare two sparse inference procedures to identify the connectivity graph. Then we infer a jump-diffusion dynamic in which jumps are driven from a Hawkes process, the occurrences of which correspond to the spike trains of the aforementioned subset of neurons that interact with the central neuron. We validate the Hawkes model with a goodness-of-fit test and we show that taking into account the information from the connectivity graph improves the inference of the jump-diffusion process. The entire code has been developed and is freely available on GitHub.
翻译:在这项工作中,我们建议捕捉到薄膜在钉子之间出现一个月球细胞的动态的复杂性,同时考虑到其他神经元的峰值。 我们的方法依靠两种类型的数据:多重钉子列的外细胞记录和中央神经细胞膜潜力的细胞内记录。 我们的主要贡献是提供一个统一的框架和完整的管道,分析从数据提取到统计推断的神经活动。 程序的第一步是选择一个神经元对中神经元产生影响的子网络: 我们使用多变形的霍克斯进程模拟所有神经元的峰值列,比较两个稀有的推断程序以确定连接图。 然后我们推断出一个跳跃式放大动力,其中跳动从一个霍克斯进程驱动,发生的情况与上述与与中央神经元互动的神经子子子的峰值列。 我们用一个良好的测试来验证霍克斯模型,并且我们显示,考虑到从连接图中获得的信息,可以改善可得到的跳动和跳动的密码。