We examine how six search engines filter and rank information in relation to the queries on the U.S. 2020 presidential primary elections under the default - that is nonpersonalized - conditions. For that, we utilize an algorithmic auditing methodology that uses virtual agents to conduct large-scale analysis of algorithmic information curation in a controlled environment. Specifically, we look at the text search results for "us elections", "donald trump", "joe biden" and "bernie sanders" queries on Google, Baidu, Bing, DuckDuckGo, Yahoo, and Yandex, during the 2020 primaries. Our findings indicate substantial differences in the search results between search engines and multiple discrepancies within the results generated for different agents using the same search engine. It highlights that whether users see certain information is decided by chance due to the inherent randomization of search results. We also find that some search engines prioritize different categories of information sources with respect to specific candidates. These observations demonstrate that algorithmic curation of political information can create information inequalities between the search engine users even under nonpersonalized conditions. Such inequalities are particularly troubling considering that search results are highly trusted by the public and can shift the opinions of undecided voters as demonstrated by previous research.
翻译:我们检查了6个搜索引擎过滤器和排序信息, 与美国2020年总统大选在默认情况下的质询有关, 即非个性化条件。 为此, 我们使用一种算法审计方法, 使用虚拟代理对受控制环境中的算法信息分析进行大规模分析。 具体地说, 我们查看谷歌、 贝度、 Bing、 DuckDuckGo、 Yahoo 和 Yandex 的“ 贝度、 Bing、 DuckDuckDuckGo、 Yahoo 和 Yandex 的文本搜索结果, 在2020 初选期间, 这些查询结果显示搜索引擎的搜索结果与使用同一搜索引擎的不同代理的结果之间存在巨大差异。 我们发现, 用户是否看到某些信息是因搜索结果固有的随机化而由偶然决定的。 我们还发现, 一些搜索引擎将特定候选人的信息来源分为不同的类别。 这些观察表明, 即使在非个性化条件下, 政治信息的算法整理可能会在搜索引擎用户之间造成信息不平等。 这些不平等尤其令人不安, 因为搜索结果被公众高度信任, 能够改变先前的选民的观点。