Building credible simulators from data is difficult because structure design, parameter calibration, and out-of-distribution (OOD) robustness are tightly coupled. We introduce SOCIA (Simulation Orchestration for Computational Intelligence with Agents), a framework that treats simulator construction as joint structure-parameter co-optimization: it elicits mechanism-rich blueprints, exposes explicit tunable parameters, and instantiates a calibration schema, producing an executable simulator with built-in calibration hooks. SOCIA couples Bayesian Optimization for sample-efficient point calibration with Simulation-Based Inference for uncertainty-aware fitting; diagnostics trigger targeted structural edits in an outer refinement loop to co-optimize design and parameters under tight budgets. Across three diverse tasks, SOCIA consistently outperforms strong baselines, excelling on both in-distribution (ID) fitting and OOD shift. Ablations that weaken structure, calibration design, or tuning yield near-monotone degradations, underscoring the necessity of unified structure-parameter optimization. We will release the code soon.
翻译:从数据构建可信仿真器具有挑战性,因为结构设计、参数校准与分布外(OOD)鲁棒性紧密耦合。我们提出了SOCIA(面向智能体计算智能的仿真编排框架),该框架将仿真器构建视为结构-参数的联合协同优化:它推导出机制丰富的蓝图,暴露显式的可调参数,并实例化一个校准方案,从而生成一个带有内置校准钩子的可执行仿真器。SOCIA将用于样本高效点校准的贝叶斯优化与用于不确定性感知拟合的基于仿真的推断相耦合;诊断机制在外层精炼循环中触发有针对性的结构编辑,从而在严格预算约束下协同优化设计与参数。在三个不同的任务中,SOCIA始终优于强基线模型,在分布内(ID)拟合和OOD偏移方面均表现出色。削弱结构、校准设计或调优的消融实验均导致近乎单调的性能下降,这突显了统一的结构-参数优化的必要性。我们将很快发布代码。