The principal task to control dynamical systems is to ensure their stability. When the system is unknown, robust approaches are promising since they aim to stabilize a large set of plausible systems simultaneously. We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR). We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set. We further show that the feasibility conditions of the proposed SDPs are \emph{equivalent}. Using the derived robust controller syntheses, we propose an efficient data dependent algorithm -- \textsc{eXploration} -- that with high probability quickly identifies a stabilizing controller. Our approach can be used to initialize existing algorithms that require a stabilizing controller as an input while adding constant to the regret. We further propose different heuristics which empirically reduce the number of steps taken by \textsc{eXploration} and reduce the suffered cost while searching for a stabilizing controller.
翻译:控制动态系统的主要任务是确保其稳定性。当系统未知时,稳健的方法很有希望,因为它们旨在同时稳定大量合理的系统。我们研究在二次成本模型下的线性控制器,也称为线性二次调节器(LQR)。我们提出两个不同的半限定程序(SDP),导致控制器稳定在环球不确定性中的所有系统。我们进一步表明,拟议的SDP的可行性条件是\emph{{eXploration}。我们利用衍生的稳健控制器合成,建议一种高效的数据依赖算法 -- -- \ textsc{eXloration} -- 高概率快速识别稳定控制器。我们的方法可以用来初始化需要稳定控制器作为投入的现有算法,同时不断增加遗憾。我们进一步提出不同的超理论,从经验上减少由 textsc{eXploration} 所采取步骤的数量,并在寻找稳定控制器的同时减少遭受的成本。