A common approach when studying the quality of representation involves comparing the latent preferences of voters and legislators, commonly obtained by fitting an item-response theory (IRT) model to a common set of stimuli. Despite being exposed to the same stimuli, voters and legislators may not share a common understanding of how these stimuli map onto their latent preferences, leading to differential item-functioning (DIF) and incomparability of estimates. We explore the presence of DIF and incomparability of latent preferences obtained through IRT models by re-analyzing an influential survey data set, where survey respondents expressed their preferences on roll call votes that U.S. legislators had previously voted on. To do so, we propose defining a Dirichlet Process prior over item-response functions in standard IRT models. In contrast to typical multi-step approaches to detecting DIF, our strategy allows researchers to fit a single model, automatically identifying incomparable sub-groups with different mappings from latent traits onto observed responses. We find that although there is a group of voters whose estimated positions can be safely compared to those of legislators, a sizeable share of surveyed voters understand stimuli in fundamentally different ways. Ignoring these issues can lead to incorrect conclusions about the quality of representation.
翻译:在研究代表性质量时,一个共同的方法是比较选民和立法者的潜在偏好,通常通过将一个项目反应理论(IRT)模型与一套共同的刺激性模型相匹配而获得的选民和立法者的潜在偏好。尽管选民和立法者受到同样的刺激,但他们可能无法就这些刺激性图如何与潜在的偏好形成共识,导致项目功能不同和估计数的不可比性。我们探索通过重新分析一组有影响力的调查数据,重新分析一组调查数据,发现存在DIF,而通过独立调查模型获得的潜在偏爱的不相容性。在这些数据中,受调查的受访者表达了他们对美国立法者先前投票的点名票的偏好。为了做到这一点,我们提议在标准综合调查模式中,界定一个先于项目反应功能的迪里赫莱进程。与典型的多步方法相比,我们的战略允许研究人员适应一个单一的模式,自动地找出从观察的答复的隐性特征的不同地图上得出不相容的分组。我们发现,虽然一组选民的估计立场可以与美国立法者相比安全地比较,但调查的选民的相当一部分基本质量代表可以理解这些不同的方式。