In this work, we demonstrate the advantage of the pGMM (``powered generalized min-max'') kernel in the context of (ridge) regression. In recent prior studies, the pGMM kernel has been extensively evaluated for classification tasks, for logistic regression, support vector machines, as well as deep neural networks. In this paper, we provide an experimental study on ridge regression, to compare the pGMM kernel regression with the ordinary ridge linear regression as well as the RBF kernel ridge regression. Perhaps surprisingly, even without a tuning parameter (i.e., $p=1$ for the power parameter of the pGMM kernel), the pGMM kernel already performs well. Furthermore, by tuning the parameter $p$, this (deceptively simple) pGMM kernel even performs quite comparably to boosted trees. Boosting and boosted trees are very popular in machine learning practice. For regression tasks, typically, practitioners use $L_2$ boost, i.e., for minimizing the $L_2$ loss. Sometimes for the purpose of robustness, the $L_1$ boost might be a choice. In this study, we implement $L_p$ boost for $p\geq 1$ and include it in the package of ``Fast ABC-Boost''. Perhaps also surprisingly, the best performance (in terms of $L_2$ regression loss) is often attained at $p>2$, in some cases at $p\gg 2$. This phenomenon has already been demonstrated by Li et al (UAI 2010) in the context of k-nearest neighbor classification using $L_p$ distances. In summary, the implementation of $L_p$ boost provides practitioners the additional flexibility of tuning boosting algorithms for potentially achieving better accuracy in regression applications.


翻译:在这项工作中, 我们展示了 PGMM (“ power global min- max ”) 内核在( ridge) 回归背景下的优势。 在最近的研究中, PGMM 内核已经为分类任务、 后勤回归、 支持矢量机器以及深神经网络进行了广泛的评估。 在本文中, 我们提供一项关于脊回归的实验性研究, 将PGM 内核回归与普通脊线回归以及 RBF 脊脊脊回归进行比较。 也许令人惊讶的是, 即使没有调值参数( 即, 美元=1美元对于 PGMM 内核内核动力参数, 美元=1美元), PGM 内核内核内核内核内核内核内核内核内核( $_ 2美元) 内核内核内核内核内核内核磁性能( 美元) 内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 内核内核内核内核内核内核内核内核内核内核内核内核内核内,, 内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内,,, 内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内,,, 内核内核内核内核内核内核内核内 内 内核内核内核内,,, 的 的 的 的 的 的 的 的 的 的 可能表示能 的精能 的精能 等, 的 的 等, 等, 等内核能 的 等内 等等等等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月13日
Arxiv
0+阅读 · 2022年9月10日
Arxiv
0+阅读 · 2022年9月9日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员