In this paper, a new key agreement protocol is presented. The protocol uses exponentiation of matrices over GF(2) to establish the key agreement. Security analysis of the protocol shows that the shared secret key is indistinguishable from the random under Decisional Diffie-Hellman (DDH) assumption for subgroup of matrices over GF(2) with prime order, and furthermore, the analysis shows that, unlike many other exponentiation based protocols, security of the protocol goes beyond the level of security provided by (DDH) assumption and intractability of Discrete Logarithm Problem (DLP). Actually, security of the protocol completely transcends the reliance on the DLP in the sense that breaking the DLP does not mean breaking the protocol. Complexity of brute force attack on the protocol is equivalent to exhaustive search for the secret key.
翻译:本文介绍了一项新的关键协议协议协议。协议使用GF(2)上的矩阵提示来建立关键协议。协议的安全分析表明,共享秘密密钥与Diffie-Hellman(DDH)决定假设GF(2)上的基号分组与主序无关的随机密钥是无法区分的,此外,分析还表明,与许多其他基于列表的协议不同的是,协议的安全性超出了DDH(DDDH)的假设和对解析逻辑问题(DLP)的可忽略程度。 事实上,协议的安全性完全超越了对DLP的依赖,因为打破DLP并不意味着破坏协议。 布鲁特部队袭击协议的复杂性相当于对秘密密钥的彻底搜索。