As unmanned aerial vehicles (UAVs) become more accessible with a growing range of applications, the potential risk of UAV disruption increases. Recent development in deep learning allows vision-based counter-UAV systems to detect and track UAVs with a single camera. However, the coverage of a single camera is limited, necessitating the need for multicamera configurations to match UAVs across cameras - a problem known as re-identification (reID). While there has been extensive research on person and vehicle reID to match objects across time and viewpoints, to the best of our knowledge, there has been no research in UAV reID. UAVs are challenging to re-identify: they are much smaller than pedestrians and vehicles and they are often detected in the air so appear at a greater range of angles. Because no UAV data sets currently use multiple cameras, we propose the first new UAV re-identification data set, UAV-reID, that facilitates the development of machine learning solutions in this emerging area. UAV-reID has two settings: Temporally-Near to evaluate performance across views to assist tracking frameworks, and Big-to-Small to evaluate reID performance across scale and to allow early reID when UAVs are detected from a long distance. We conduct a benchmark study by extensively evaluating different reID backbones and loss functions. We demonstrate that with the right setup, deep networks are powerful enough to learn good representations for UAVs, achieving 81.9% mAP on the Temporally-Near setting and 46.5% on the challenging Big-to-Small setting. Furthermore, we find that vision transformers are the most robust to extreme variance of scale.


翻译:随着无人驾驶飞行器(UAVs)随着应用范围不断扩大而更容易获得,无人驾驶飞行器(UAVs)的潜在破坏风险增加。最近深层学习的发展使得基于视觉的反UAV系统能够用单一相机探测和跟踪无人驾驶飞行器。然而,单一相机的覆盖范围有限,因此需要多摄像组配置来匹配无人驾驶飞行器 -- -- 一个被称为再识别(reID)的问题。虽然对人和车辆再识别系统进行了广泛的研究,以便与不同时间和观点的对象相匹配,但据我们所知,对UAV ReID没有进行任何研究。无人驾驶飞行器的最近发展使得基于视觉的反射线系统难以重新确定:它们比行人和车辆要小得多,而且往往在空气中被检测到更多的角度。由于目前没有一台UAVAV数据集使用多个相机,因此我们建议建立第一个新的UAV再识别数据集(REID),这便于在这个新兴区域开发机器学习解决方案。UAV-reID有两个背景:我们即将评估各种观点的全方观测业绩,以协助跟踪框架,而BAADS-ADSAD的早期测测测测测得一个跨轨道的早期的深度测试,从而测量到远程测试到远程测试到远程测试到远程测试。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
97+阅读 · 2021年8月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
深度学习行人重识别ReID最新综述与展望
计算机视觉life
6+阅读 · 2020年2月16日
已删除
将门创投
5+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Attention Network Robustification for Person ReID
Arxiv
5+阅读 · 2019年10月15日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object detection on aerial imagery using CenterNet
Arxiv
6+阅读 · 2019年8月22日
Arxiv
5+阅读 · 2018年5月22日
VIP会员
相关资讯
深度学习行人重识别ReID最新综述与展望
计算机视觉life
6+阅读 · 2020年2月16日
已删除
将门创投
5+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员