We build surrogate models for dynamic 3D subsurface single-phase flow problems with multiple vertical producing wells. The surrogate model provides efficient pressure estimation of the entire formation at any timestep given a stochastic permeability field, arbitrary well locations and penetration lengths, and a timestep matrix as inputs. The well production rate or bottom hole pressure can then be determined based on Peaceman's formula. The original surrogate modeling task is transformed into an image-to-image regression problem using a convolutional encoder-decoder neural network architecture. The residual of the governing flow equation in its discretized form is incorporated into the loss function to impose theoretical guidance on the model training process. As a result, the accuracy and generalization ability of the trained surrogate models are significantly improved compared to fully data-driven models. They are also shown to have flexible extrapolation ability to permeability fields with different statistics. The surrogate models are used to conduct uncertainty quantification considering a stochastic permeability field, as well as to infer unknown permeability information based on limited well production data and observation data of formation properties. Results are shown to be in good agreement with traditional numerical simulation tools, but computational efficiency is dramatically improved.
翻译:我们用多个垂直生产油井为动态 3D 地表下单相流问题建立代用模型。 代用模型在任何时间阶段都提供对整个形成过程的高效压力估计, 并配有随机透视性渗透场、 任意的井位和渗透长度, 以及作为输入的定时矩阵。 这样, 良好的生产率或底洞压力就可以根据Paixman的公式确定。 最初的代用模型任务将使用一个相动编码- 脱coder 神经网络结构转换成一个图像到图像回归的问题。 代用模型的剩余分解式流方程式被纳入损失函数, 以对模型培训过程进行理论指导。 结果, 与完全由数据驱动的模型相比, 训练有素的代用替代模型的准确性和一般化能力有了显著的提高。 这些代用模型还显示具有灵活的外推能力, 具有不同统计数据的可渗透性域。 代用模型用于进行不确定性的量化, 用于考虑一个可变性的可探测性场, 其分解式形式的流方形式等值的剩余部分被纳入损失函数, 以有限的生产数据和观察性数据生成工具显示良好的数字分析。 。