We introduce the Variational Open-Domain (VOD) framework for end-to-end training and evaluation of retrieval-augmented models (open-domain question answering and language modelling). We show that the R\'enyi variational bound, a lower bound to the task marginal likelihood, can be exploited to aid optimization and use importance sampling to estimate the task log-likelihood lower bound and its gradients using samples drawn from an auxiliary retriever (approximate posterior). The framework can be used to train modern retrieval-augmented systems end-to-end using tractable and consistent estimates of the R\'enyi variational bound and its gradients. We demonstrate the framework's versatility by training reader-retriever BERT-based models on multiple-choice medical exam questions (MedMCQA and USMLE). We registered a new state-of-the-art for both datasets (MedMCQA: $62.9$\%, USMLE: $55.0$\%). Last, we show that the retriever part of the learned reader-retriever model trained on the medical board exam questions can be used in search engines for a medical knowledge base.
翻译:我们引入了终端到终端培训和检索增强模型评价的开放度框架(开放式问答和语言建模),我们显示R\'enyi变异约束,与任务边际可能性限制较低,可以用来帮助优化和使用重要取样,利用从辅助检索器(近似后背)提取的样本来估计任务日志的较低约束及其梯度。可以利用对R\'enyi变异约束及其梯度的可移植和一致估计来培训现代检索增强系统端到终端。我们通过培训读者-可追踪的BERT多选择医学测试问题模型(MedMCQA和美国MLE)来展示该框架的多功能性。我们登记了两个数据集的新的最新状态(MedMCQA:62.9美元,USMLE:5.0美元)。最后,我们展示了学习的读者-断层模型的检索部分用于医学测试引擎的搜索。