We propose a solution to the weight transport problem, which questions the biological plausibility of the backpropagation algorithm. We derive our method based upon a theoretical analysis of the (approximate) dynamics of leaky integrate-and-fire neurons. We show that the use of spike timing alone outcompetes existing biologically plausible methods for synaptic weight inference in spiking neural network models. Furthermore, our proposed method is more flexible, being applicable to any spiking neuron model, is conservative in how many parameters are required for implementation and can be deployed in an online-fashion with minimal computational overhead. These features, together with its biological plausibility, make it an attractive mechanism underlying weight inference at single synapses.
翻译:我们提出重力迁移问题解决方案,质疑回压算法的生物合理性。 我们的方法基于对渗漏整合与火灾神经元的(近似)动态的理论分析。 我们显示,单凭峰值计时就比现有生物上可行的神经网络模型中合成重量推论方法高。 此外,我们提出的方法更灵活,适用于任何神经神经跳动模型,对于执行需要多少参数是保守的,并且可以安装在具有最低计算间接值的在线时装上。 这些特征加上其生物概率,使得它成为单一神经突变中具有吸引力的重量推论机制。