We present a new algorithm for approximating the number of triangles in a graph $G$ whose edges arrive as an arbitrary order stream. If $m$ is the number of edges in $G$, $T$ the number of triangles, $\Delta_E$ the maximum number of triangles which share a single edge, and $\Delta_V$ the maximum number of triangles which share a single vertex, then our algorithm requires space: \[ \widetilde{O}\left(\frac{m}{T}\cdot \left(\Delta_E + \sqrt{\Delta_V}\right)\right) \] Taken with the $\Omega\left(\frac{m \Delta_E}{T}\right)$ lower bound of Braverman, Ostrovsky, and Vilenchik (ICALP 2013), and the $\Omega\left( \frac{m \sqrt{\Delta_V}}{T}\right)$ lower bound of Kallaugher and Price (SODA 2017), our algorithm is optimal up to log factors, resolving the complexity of a classic problem in graph streaming.
翻译:我们提出了一个新的算法,用于在一张G$G$的图形中接近三角数,其边缘以任意顺序流的形式到达。如果美元是以G$计的边缘数,如果美元是以G$计的边缘数,美元是三角数,$Delta_E$是共享单一边缘的最大三角数,$Delta_V$是共享单一顶端的最大三角数,而$Delta_V$是共享一个顶端的最大三角数,那么我们的算法需要空间:\[\\ 全局{O ⁇ left(\ frac{m}T ⁇ cdot\left(\ Delta_E+\sqrt_Delta_V ⁇ right\right)\],用$Omega\left\left(\\\f{m\\\Delta_E\\\\\\\\\\\\\\\\\\\\\t\right)美元是布拉弗曼、Ostrovsky和Vlechnchik(CLACPL) 和SMRIFILOFIGLULI, 和SFIFILOFlGFI。