Despite significant advancements in deep learning-based sparse-view computed tomography (SVCT) reconstruction algorithms, these methods still encounter two primary limitations: (i) It is challenging to explicitly prove that the prior networks of deep unfolding algorithms satisfy Lipschitz constraints due to their empirically designed nature. (ii) The substantial storage costs of training a separate model for each setting in the case of multiple views hinder practical clinical applications. To address these issues, we elaborate an explicitly provable Lipschitz-constrained network, dubbed LipNet, and integrate an explicit prompt module to provide discriminative knowledge of different sparse sampling settings, enabling the treatment of multiple sparse view configurations within a single model. Furthermore, we develop a storage-saving deep unfolding framework for multiple-in-one SVCT reconstruction, termed PromptCT, which embeds LipNet as its prior network to ensure the convergence of its corresponding iterative algorithm. In simulated and real data experiments, PromptCT outperforms benchmark reconstruction algorithms in multiple-in-one SVCT reconstruction, achieving higher-quality reconstructions with lower storage costs. On the theoretical side, we explicitly demonstrate that LipNet satisfies boundary property, further proving its Lipschitz continuity and subsequently analyzing the convergence of the proposed iterative algorithms. The data and code are publicly available at https://github.com/shibaoshun/PromptCT.


翻译:尽管基于深度学习的稀疏视角计算机断层扫描(SVCT)重建算法已取得显著进展,这些方法仍面临两个主要局限:(i)由于深度展开算法中先验网络的经验设计特性,难以显式证明其满足Lipschitz约束条件。(ii)在多视角场景下,为每种参数设置单独训练模型所需的高昂存储成本阻碍了临床实际应用。为解决这些问题,我们设计了一种可显式证明的Lipschitz约束网络(命名为LipNet),并集成显式提示模块以提供不同稀疏采样设置的判别性知识,从而实现在单一模型中处理多种稀疏视角配置。此外,我们开发了一种存储高效的深度展开框架(命名为PromptCT)用于多合一SVCT重建,该框架将LipNet嵌入为先验网络以确保对应迭代算法的收敛性。在仿真与真实数据实验中,PromptCT在多合一SVCT重建任务中优于基准重建算法,能以更低存储成本获得更高质量的重建结果。在理论层面,我们显式证明了LipNet满足边界特性,进一步论证其Lipschitz连续性,并分析了所提迭代算法的收敛性。数据与代码已公开于https://github.com/shibaoshun/PromptCT。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员