Plasmonic devices, fundamental to modern nanophotonics, exploit resonant interactions between light and free electrons in metals to achieve enhanced light trapping and electromagnetic field confinement. However, modeling their complex, nonlinear optical responses remains computationally intensive. In this work, we combine finite-difference time-domain simulations with machine learning to simulate and predict absorbed power behavior in multilayer plasmonic stacks composed of SiO2, gold, silver, and indium tin oxide. By varying Au and Ag thicknesses (10-50nm) across a spectral range of 300-1500nm, we generate spatial absorption maps and integrated power metrics from full-wave solutions to Maxwell's equations. A multilayer perceptron models global absorption behavior with a mean absolute error of 0.0953, while a convolutional neural network predicts spatial absorption distributions with an MAE of 0.0101. SHapley Additive exPlanations identify plasmonic layer thickness and excitation wavelength as dominant contributors to absorption, which peaks between 450 and 850~nm. Gold demonstrates broader and more sustained absorption compared to silver, although both metals exhibit reduced efficiency outside the resonance window. This integrated FDTD-ML framework offers a fast, explainable, and accurate approach for investigating tunable plasmonic behavior in multilayer systems, with applications in optical sensing, photovoltaics, and nanophotonic device design.
翻译:等离子体器件作为现代纳米光子学的核心基础,通过金属中光与自由电子的共振相互作用实现增强的光捕获与电磁场局域效应。然而,对其复杂非线性光学响应的建模仍面临计算量巨大的挑战。本研究结合时域有限差分仿真与机器学习方法,对由二氧化硅、金、银和氧化铟锡构成的多层等离子体堆叠结构中的吸收功率行为进行模拟与预测。通过在300-1500nm光谱范围内调节金与银的厚度(10-50nm),基于麦克斯韦方程组的全波解生成了空间吸收图谱与积分功率指标。多层感知器模型对全局吸收行为的建模平均绝对误差为0.0953,而卷积神经网络预测空间吸收分布的MAE达到0.0101。SHAP可解释性分析表明等离子体层厚度与激发波长是吸收行为的主导因素,吸收峰值出现在450-850nm波长区间。相较于银,金展现出更宽谱且更持续的吸收特性,但两种金属在共振窗口外均表现出效率下降。这种融合FDTD与机器学习的集成框架为研究多层系统中的可调谐等离子体行为提供了快速、可解释且精确的研究途径,在光学传感、光伏器件及纳米光子器件设计领域具有重要应用价值。