Many current approaches to machine learning in particle physics use generic architectures that require large numbers of parameters and disregard underlying physics principles, limiting their applicability as scientific modeling tools. In this work, we present a machine learning architecture that uses a set of inputs maximally reduced with respect to the full 6-dimensional Lorentz symmetry, and is fully permutation-equivariant throughout. We study the application of this network architecture to the standard task of top quark tagging and show that the resulting network outperforms all existing competitors despite much lower model complexity. In addition, we present a Lorentz-covariant variant of the same network applied to a 4-momentum regression task.
翻译:目前许多粒子物理学机学方法使用需要大量参数的通用结构,而无视基本物理原则,限制了其作为科学模型工具的适用性。在这项工作中,我们提出了一个机器学习结构,在完全六维的Lorentz对称方面,使用一套最大减量的投入,并且在整个过程中完全变异。我们研究了这一网络结构在顶层夸克标记标准任务中的应用情况,并表明,尽管模型复杂程度要低得多,但由此产生的网络优于所有现有竞争者。此外,我们提出了同一网络的Lorentz可变变量,适用于四动回归任务。