Ongoing climate change calls for fast and accurate weather and climate modeling. However, when solving large-scale weather prediction simulations, state-of-the-art CPU and GPU implementations suffer from limited performance and high energy consumption. These implementations are dominated by complex irregular memory access patterns and low arithmetic intensity that pose fundamental challenges to acceleration. To overcome these challenges, we propose and evaluate the use of near-memory acceleration using a reconfigurable fabric with high-bandwidth memory (HBM). We focus on compound stencils that are fundamental kernels in weather prediction models. By using high-level synthesis techniques, we develop NERO, an FPGA+HBM-based accelerator connected through OCAPI (Open Coherent Accelerator Processor Interface) to an IBM POWER9 host system. Our experimental results show that NERO outperforms a 16-core POWER9 system by 5.3x and 12.7x when running two different compound stencil kernels. NERO reduces the energy consumption by 12x and 35x for the same two kernels over the POWER9 system with an energy efficiency of 1.61 GFLOPS/Watt and 21.01 GFLOPS/Watt. We conclude that employing near-memory acceleration solutions for weather prediction modeling is promising as a means to achieve both high performance and high energy efficiency.
翻译:然而,在解决大规模天气预测模拟时,最先进的CPU和GPU的运行业绩有限,能源消耗量高。这些实施主要是复杂的不规则记忆存取模式和低算术强度,给加速速度带来根本性挑战。为了克服这些挑战,我们提议使用一个具有高带宽内存(HBM)的可重建结构来评估近模拟加速的使用情况。我们侧重于作为天气预测模型基本内核的复合固态。我们利用高层次合成技术开发了NERO,这是一个基于FPGA+HBM的加速器,通过OCAPI(开源加速器进程界面)连接到IBM POWER9主机系统。我们的实验结果表明,NERO在运行两种不同的化合物内核内核内核时,比16个核心POWER9系统高出5.3x和12.7x。NEROO将能源消耗量减少12x和35x,通过OFGFS-PO的高效度,这是我们为GFA/PFA的两种高温周期,通过GFS-PFA-W的高效的系统实现GFS-PFL1和VA-W的同步的高效的高效的同步的同步,这是我们为GFLOFLOFS-PFA-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-V-S-S-S-S-S-S-S-S-S-V-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-P-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S