Next-generation wireless technologies such as 6G aim to meet demanding requirements such as ultra-high data rates, low latency, and enhanced connectivity. Extremely Large-Scale MIMO (XL-MIMO) and Reconfigurable Intelligent Surface (RIS) are key enablers, with XL-MIMO boosting spectral and energy efficiency through numerous antennas, and RIS offering dynamic control over the wireless environment via passive reflective elements. However, realizing their full potential depends on accurate Channel State Information (CSI). Recent advances in deep learning have facilitated efficient cascaded channel estimation. However, the scalability and practical deployment of existing estimation models in XL-MIMO systems remain limited. The growing number of antennas and RIS elements introduces a significant barrier to real-time and efficient channel estimation, drastically increasing data volume, escalating computational complexity, requiring advanced hardware, and resulting in substantial energy consumption. To address these challenges, we propose a lightweight deep learning framework for efficient cascaded channel estimation in XL-MIMO systems, designed to minimize computational complexity and make it suitable for deployment on resource-constrained edge devices. Using spatial correlations in the channel, we introduce a patch-based training mechanism that reduces the dimensionality of input to patch-level representations while preserving essential information, allowing scalable training for large-scale systems. Simulation results under diverse conditions demonstrate that our framework significantly improves estimation accuracy and reduces computational complexity, regardless of the increasing number of antennas and RIS elements in XL-MIMO systems.


翻译:6G等下一代无线技术旨在满足超高数据速率、低时延和增强连接性等严苛要求。超大规模多输入多输出(XL-MIMO)与可重构智能表面(RIS)是实现这些目标的关键使能技术:XL-MIMO通过海量天线提升频谱与能量效率,RIS则借助无源反射单元实现对无线环境的动态调控。然而,充分发挥其潜力依赖于准确的信道状态信息获取。深度学习的最新进展促进了高效级联信道估计的实现,但现有估计模型在XL-MIMO系统中的可扩展性与实际部署仍面临局限。天线与RIS单元数量的持续增长为实时高效信道估计带来显著挑战:数据量急剧增加、计算复杂度攀升、需要先进硬件支撑并导致能耗大幅上升。为应对这些挑战,本文提出一种面向XL-MIMO系统的轻量化深度学习框架,用于高效级联信道估计。该框架通过最小化计算复杂度,使其适于部署在资源受限的边缘设备上。利用信道中的空间相关性,我们引入基于分块的训练机制,将输入数据降维至分块级表征,在保留关键信息的同时实现大规模系统的可扩展训练。多种场景下的仿真结果表明,无论XL-MIMO系统中天线与RIS单元数量如何增加,所提框架均能显著提升估计精度并降低计算复杂度。

0
下载
关闭预览

相关内容

国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员