Rate-Splitting Multiple Access (RSMA) is regarded as a key enabling technique for sixth-generation (6G) wireless systems for its powerful interference management substantially enhancing link throughput. Reconfigurable Intelligent Surface (RIS) can effectively shape the wireless propagation to match the environment and improve communication performance. However, in conventional RSMA-RIS architectures, the antenna elements are fixed, which underutilizes spatial degrees of freedom and hence constrains system performance. To address this limitation, we propose a movable-antenna (MA) assisted RSMA-RIS framework and formulate a sum-rate maximization problem that jointly optimizes the transmit beamforming matrix, the RIS reflection matrix, the common-rate partition, and the MA positions. The original problem is equivalently transformed by employing the fractional programming (FP) method, and a closed-form solution for the common rate splitting is derived. Leveraging the Karush-Kuhn-Tucker (KKT) conditions, we obtain iterative updates for the Lagrange multipliers together with a closed-form expression for the beamforming matrix. We then develop an update rule for the RIS reflection matrix via the dual problem, and finally determine the optimal antenna locations using a gradient-ascent procedure. Numerical results indicate that, even in the presence of RIS assistance, incorporating MAs yields additional performance improvements for RSMA. Moreover, relative to space-division multiple access (SDMA), the assistance of MA yields a greater performance gain for RSMA.
翻译:速率分割多址接入(RSMA)因其强大的干扰管理能力能显著提升链路吞吐量,被视为第六代(6G)无线系统的关键使能技术。可重构智能表面(RIS)能有效塑造无线传播环境以匹配需求,从而提升通信性能。然而,在传统的RSMA-RIS架构中,天线单元位置固定,未能充分利用空间自由度,从而限制了系统性能。为克服这一局限,本文提出了一种可移动天线(MA)辅助的RSMA-RIS框架,并构建了一个联合优化发射波束成形矩阵、RIS反射矩阵、公共速率分配以及MA位置的和速率最大化问题。通过采用分式规划(FP)方法对原问题进行等价变换,并推导出公共速率分割的闭式解。利用Karush-Kuhn-Tucker(KKT)条件,我们获得了拉格朗日乘子的迭代更新规则以及波束成形矩阵的闭式表达式。随后,通过其对偶问题推导了RIS反射矩阵的更新规则,并最终采用梯度上升法确定了天线的最优位置。数值结果表明,即使在RIS辅助下,引入MA仍能为RSMA带来额外的性能提升。此外,相较于空分多址(SDMA),MA的辅助能为RSMA带来更大的性能增益。