The orthogonal time frequency space (OTFS) signal is considered a promising solution for high-mobility wireless environments. It manages Doppler effects by utilizing delay-Doppler (DD) domain processing. However, the relatively long OTFS frame duration could introduce considerable sensing or communication latency when radar and communication are performed separately. By operating in a dual-functional radar and communication (DFRC) mode, the OTFS system performs sensing and data transmission simultaneously, thereby reducing the resulting latency. Nevertheless, the optimal OTFS DFRC signal strategy remains insufficiently explored. This paper investigates the optimal signal design for OTFS DFRC systems, focusing on pilot symbol design and data symbol power allocation. Specifically, we derive a channel capacity lower bound metric for communication that considers channel estimation errors in OTFS. For sensing, we derive an integrated sidelobe level (ISL), accounting for the randomness of the data symbols alongside the deterministic pilot symbols. Leveraging the above metrics, we formulate an optimization problem that balances radar and communication performance, and then solve it using an alternating optimization framework. We validate the proposed signal through numerical analysis and Monte Carlo simulations. Our analysis shows that OTFS DFRC enforces a deterministic pilot signal that is characterized by a concentrated peak in the DD domain, which furnishes a common structure in the DD domain facilitating sensing and channel estimation, with data multiplexed in other DD grids, thereby unifying sensing and communication within a single OTFS signal. Compared with conventional OTFS signals, the proposed OTFS DFRC signal expands the achievable sensing-communication performance region, delivering at least a 9.45 dB ISL suppression for sensing and a 4.82 dB SINR ratio gain for communication.
翻译:正交时频空间(OTFS)信号被认为是高移动性无线环境中的一种有前景的解决方案。它通过利用时延-多普勒(DD)域处理来管理多普勒效应。然而,当雷达与通信功能分开执行时,相对较长的OTFS帧持续时间可能会引入相当大的感知或通信延迟。通过在双功能雷达与通信(DFRC)模式下运行,OTFS系统可同时执行感知与数据传输,从而降低由此产生的延迟。尽管如此,最优的OTFS DFRC信号策略仍未得到充分探索。本文研究了OTFS DFRC系统的最优信号设计,重点关注导频符号设计与数据符号功率分配。具体而言,我们推导了一个考虑OTFS中信道估计误差的通信信道容量下界度量。对于感知,我们推导了一个综合旁瓣电平(ISL)度量,该度量考虑了数据符号的随机性以及确定性导频符号。利用上述度量,我们构建了一个平衡雷达与通信性能的优化问题,并随后采用交替优化框架对其进行求解。我们通过数值分析和蒙特卡洛仿真验证了所提出的信号。我们的分析表明,OTFS DFRC强制使用一个在DD域具有集中峰值的确定性导频信号,该信号在DD域提供了一个共同结构,有利于感知和信道估计,而数据则复用在其他DD网格上,从而将感知与通信统一在单个OTFS信号内。与传统OTFS信号相比,所提出的OTFS DFRC信号扩展了可实现的感知-通信性能区域,为感知提供了至少9.45 dB的ISL抑制,并为通信带来了4.82 dB的SINR增益。