The study of negotiation styles dates back to Aristotle's ethos-pathos-logos rhetoric. Prior efforts primarily studied the success of negotiation agents. Here, we shift the focus towards the styles of negotiation strategies. Our focus is the strategic dialogue board game Diplomacy, which affords rich natural language negotiation and measures of game success. We used LLM-as-a-judge to annotate a large human-human set of Diplomacy games for fine-grained negotiation tactics from a sociologically-grounded taxonomy. Using a combination of the It Takes Two and WebDiplomacy datasets, we demonstrate the reliability of our LLM-as-a-Judge framework and show strong correlations between negotiation features and success in the Diplomacy setting. Lastly, we investigate the differences between LLM and human negotiation strategies and show that fine-tuning can steer LLM agents toward more human-like negotiation behaviors.
翻译:谈判风格的研究可追溯至亚里士多德提出的理性-情感-人格修辞学框架。既往研究主要关注谈判智能体的成功率,本文则将研究重点转向谈判策略的风格特征。我们以战略对话棋盘游戏《外交》为研究对象,该游戏支持丰富的自然语言谈判并具备明确的胜负判定机制。我们采用"LLM即裁判"的方法,基于社会学理论构建的细粒度谈判策略分类体系,对大规模人人对战《外交》游戏数据进行了标注。通过整合It Takes Two与WebDiplomacy数据集,我们验证了"LLM即裁判"框架的可靠性,并揭示了谈判特征与《外交》游戏胜率之间的显著相关性。最后,我们探究了大型语言模型与人类谈判策略的差异,证明通过微调可以使大型语言模型智能体展现出更趋近人类的谈判行为。