Hyperbolicity is a graph parameter related to how much a graph resembles a tree with respect to distances. Its computation is challenging as the main approaches consist in scanning all quadruples of the graph or using fast matrix multiplication as building block, both are not practical for large graphs. In this paper, we propose and evaluate an approach that uses a hierarchy of distance-k dominating sets to reduce the search space. This technique, compared to the previous best practical algorithms, enables us to compute the hyperbolicity of graphs with unprecedented size (up to a million nodes) and speeds up the computation of previously attainable graphs by up to 3 orders of magnitude while reducing the memory consumption by up to more than a factor of 23.


翻译:超偏度是一个图形参数, 与图表在距离方面与树的相似程度有关。 它的计算具有挑战性, 因为主要方法包括扫描图形的所有四重或将快速矩阵乘法作为积块, 两者对大图都不切实际。 在本文中, 我们提议并评价一种方法, 使用远程- k 主导数据集的等级来缩小搜索空间。 与以往的最佳实用算法相比, 这一技术使我们能够计算出具有前所未见尺寸( 最高为百万节点)的图形的双向性, 并加快计算出前可实现的图形, 最多3个数量级, 同时将存储耗减到23个以上。

0
下载
关闭预览

相关内容

【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月16日
Arxiv
4+阅读 · 2020年10月18日
Hyperbolic Graph Attention Network
Arxiv
6+阅读 · 2019年12月6日
Arxiv
13+阅读 · 2019年11月14日
Fast AutoAugment
Arxiv
5+阅读 · 2019年5月1日
VIP会员
相关VIP内容
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
相关论文
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月16日
Arxiv
4+阅读 · 2020年10月18日
Hyperbolic Graph Attention Network
Arxiv
6+阅读 · 2019年12月6日
Arxiv
13+阅读 · 2019年11月14日
Fast AutoAugment
Arxiv
5+阅读 · 2019年5月1日
Top
微信扫码咨询专知VIP会员