Polynomial multiplication is a bottleneck in most of the public-key cryptography protocols, including Elliptic-curve cryptography and several of the post-quantum cryptography algorithms presently being studied. In this paper, we present a library of various large integer polynomial multipliers to be used in hardware cryptocores. Our library contains both digitized and non-digitized multiplier flavours for circuit designers to choose from. The library is supported by a C++ generator that automatically produces the multipliers' logic in Verilog HDL that is amenable for FPGA and ASIC designs. Moreover, for ASICs, it also generates configurable and parameterizable synthesis scripts. The features of the generator allow for a quick generation and assessment of several architectures at the same time, thus allowing a designer to easily explore the (complex) optimization search space of polynomial multiplication.


翻译:多元乘法是大多数公用钥匙加密协议中的一个瓶颈,包括正在研究的 Elliptic-curve 密码学和数子系后加密算法。在本文中,我们展示了用于硬件加密核的各种大整数多元乘数的图书馆。我们的图书馆包含供电路设计师选择的数字化和非数字化乘数调味料。图书馆得到一个C++生成器的支持,该生成器自动生成Verilog HDL中的乘数逻辑,供FPGA和ACICE设计使用。此外,对于ASICs来说,它还生成可配置和可参数合成的合成脚本。生成器的特性允许快速生成并同时评估若干结构,从而使设计师能够方便地探索多相乘的(复合)优化搜索空间。

0
下载
关闭预览

相关内容

FPGA:ACM/SIGDA International Symposium on Field-Programmable Gate Arrays。 Explanation:ACM/SIGDA现场可编程门阵列国际研讨会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/fpga/
专知会员服务
39+阅读 · 2020年9月6日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月20日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员