There is a growing trend regarding perceiving personal data as a commodity. Existing studies have built frameworks and theories about how to determine an arbitrage-free price of a given query according to the privacy loss quantified by differential privacy. However, those previous works have assumed that data buyers can purchase query answers with the arbitrary privacy loss of data owners, which may not be valid under strict privacy regulations such as GDPR and the increasing privacy concerns of data owners. In this paper, we study how to empower data owners with the control of privacy loss in regard to data trading. First, we propose a modularized framework for trading personal data that enables each data owner to bound her personalized privacy loss from data trading. Second, since bounded privacy losses indicate bounded utilities of query answers, we propose a reasonable relaxation of arbitrage freeness named partial arbitrage freeness, i.e., the guarantee of arbitrage-free pricing only for a limited range of utilities, which provides more possibilities for our market design. Third, to avoid arbitrage behaviors, we propose a general method for ensuring arbitrage freeness under personalized differential privacy. Fourth, to make full use of data owners' personalized privacy loss bounds, we propose online privacy budget allocation techniques to dynamically allocate privacy losses for queries under arbitrage freeness.


翻译:在将个人数据视为商品方面,正在形成一种日益增长的趋势。现有研究已经建立了一些框架和理论,如何根据以差异隐私权量化的隐私损失确定无套利价格;然而,先前的这些工程假设,数据购买者可以以数据拥有者的任意隐私损失来购买查询答案,而根据严格隐私条例,如GDPR, 以及数据拥有者对隐私的日益关切,这可能不成立。在本文件中,我们研究如何授权数据拥有者控制数据交易方面的隐私损失。首先,我们提议了一个模块化的个人数据交易框架,使每个数据拥有者能够将个人化隐私损失与数据交易捆绑在一起。第二,由于被捆绑的隐私损失表明受约束的查询工具,我们提议合理放宽仲裁自由自由度,称为部分仲裁自由,即保证仅对有限范围的公用事业实行无套利定价,这为我们市场设计提供了更多的可能性。第三,为了避免套利行为,我们提议了一种确保个人化隐私隐私隐私损失的仲裁自由度的一般方法。第四,由于被绑定的隐私损失,我们提议在动态保密预算分配下充分使用个人隐私损失的保密技术。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
将门创投
4+阅读 · 2018年11月6日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
将门创投
4+阅读 · 2018年11月6日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员