Random Forest (RFs) are among the most widely used Machine Learning (ML) classifiers. Even though RFs are not interpretable, there are no dedicated non-heuristic approaches for computing explanations of RFs. Moreover, there is recent work on polynomial algorithms for explaining ML models, including naive Bayes classifiers. Hence, one question is whether finding explanations of RFs can be solved in polynomial time. This paper answers this question negatively, by proving that computing one PI-explanation of an RF is D^P-complete. Furthermore, the paper proposes a propositional encoding for computing explanations of RFs, thus enabling finding PI-explanations with a SAT solver. This contrasts with earlier work on explaining boosted trees (BTs) and neural networks (NNs), which requires encodings based on SMT/MILP. Experimental results, obtained on a wide range of publicly available datasets, demontrate that the proposed SAT-based approach scales to RFs of sizes common in practical applications. Perhaps more importantly, the experimental results demonstrate that, for the vast majority of examples considered, the SAT-based approach proposed in this paper significantly outperforms existing heuristic approaches.


翻译:随机森林(RFs)是最广泛使用的机械学习(ML)分类方法之一。 即使RFs不能解释, 也没有专门的非重型方法来计算对RFs的解释。 此外, 最近还就解释ML模型的多元数学算法进行了工作, 包括幼稚的Bayes分类器。 因此, 一个问题是, 找到RF的解释能否在多元时间内解决。 本文通过证明对RF进行一个 PI 解析( ML) 的方法是完全的, 来否定这个问题。 此外, 本文还提出了计算RFs解释的理论编码, 从而能够找到与SAT 解析器的 PI Explations 。 这与早先解释增殖树(BTs) 和神经网络(NNSs) 的工作形成对照, 前者要求根据SMT/MILP 进行编码。 实验结果来自广泛的公开数据集, 其提议基于SAT 方法的大小比对实际应用中常见的RFs。 更重要的是, 实验结果表明, 实验结果显示他提出的大多数论文中的现有模型都显示。

0
下载
关闭预览

相关内容

SAT是研究者关注命题可满足性问题的理论与应用的第一次年度会议。除了简单命题可满足性外,它还包括布尔优化(如MaxSAT和伪布尔(PB)约束)、量化布尔公式(QBF)、可满足性模理论(SMT)和约束规划(CP),用于与布尔级推理有明确联系的问题。官网链接:http://sat2019.tecnico.ulisboa.pt/
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
相关论文
Top
微信扫码咨询专知VIP会员