This article introduces HYLU, a hybrid parallel LU factorization-based general-purpose solver designed for efficiently solving sparse linear systems (Ax=b) on multi-core shared-memory architectures. The key technical feature of HYLU is the integration of hybrid numerical kernels so that it can adapt to various sparsity patterns of coefficient matrices. Tests on 34 sparse matrices from SuiteSparse Matrix Collection reveal that HYLU outperforms Intel MKL PARDISO in the numerical factorization phase by geometric means of 1.71X (for one-time solving) and 2.21X (for repeated solving). HYLU can be downloaded from https://github.com/chenxm1986/hylu.
翻译:本文介绍了HYLU,一种基于混合并行LU分解的通用求解器,专为在多核共享内存架构上高效求解稀疏线性系统(Ax=b)而设计。HYLU的关键技术特征在于集成混合数值核,使其能够适应系数矩阵的各种稀疏模式。在SuiteSparse矩阵集合中的34个稀疏矩阵上的测试表明,在数值分解阶段,HYLU以几何平均1.71倍(针对一次性求解)和2.21倍(针对重复求解)的性能优于Intel MKL PARDISO。HYLU可从https://github.com/chenxm1986/hylu下载。