Large language models (LLMs) have gained significant attention in various fields but prone to hallucination, especially in knowledge-intensive (KI) tasks. To address this, retrieval-augmented generation (RAG) has emerged as a popular solution to enhance factual accuracy. However, traditional retrieval modules often rely on large document index and disconnect with generative tasks. With the advent of generative retrieval (GR), language models can retrieve by directly generating document identifiers (DocIDs), offering superior performance in retrieval tasks. However, the potential relationship between GR and downstream tasks remains unexplored. In this paper, we propose \textbf{CorpusLM}, a unified language model that leverages external corpus to tackle various knowledge-intensive tasks by integrating generative retrieval, closed-book generation, and RAG through a unified greedy decoding process. We design the following mechanisms to facilitate effective retrieval and generation, and improve the end-to-end effectiveness of KI tasks: (1) We develop a ranking-oriented DocID list generation strategy, which refines GR by directly learning from a DocID ranking list, to improve retrieval quality. (2) We design a continuous DocIDs-References-Answer generation strategy, which facilitates effective and efficient RAG. (3) We employ well-designed unsupervised DocID understanding tasks, to comprehend DocID semantics and their relevance to downstream tasks. We evaluate our approach on the widely used KILT benchmark with two variants of backbone models, i.e., T5 and Llama2. Experimental results demonstrate the superior performance of our models in both retrieval and downstream tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员