We study the sample complexity of teaching, termed as "teaching dimension" (TDim) in the literature, for the teaching-by-reinforcement paradigm, where the teacher guides the student through rewards. This is distinct from the teaching-by-demonstration paradigm motivated by robotics applications, where the teacher teaches by providing demonstrations of state/action trajectories. The teaching-by-reinforcement paradigm applies to a wider range of real-world settings where a demonstration is inconvenient, but has not been studied systematically. In this paper, we focus on a specific family of reinforcement learning algorithms, Q-learning, and characterize the TDim under different teachers with varying control power over the environment, and present matching optimal teaching algorithms. Our TDim results provide the minimum number of samples needed for reinforcement learning, and we discuss their connections to standard PAC-style RL sample complexity and teaching-by-demonstration sample complexity results. Our teaching algorithms have the potential to speed up RL agent learning in applications where a helpful teacher is available.


翻译:我们研究教学的抽样复杂性,在文献中被称为“教学层面”(TDim),在教学的逐个强化范式中,教师通过奖励引导学生。这不同于机器人应用所激励的逐个示范式教学模式,教师通过展示状态/动作轨迹进行教学。逐个教学模式适用于更广泛的现实世界环境中的演示不方便,但没有系统研究。在本文中,我们侧重于一个加强学习算法、Q-学习的具体家庭,将TDim定性为对环境有不同控制力的不同教师,并提出了相应的最佳教学算法。我们的TDim结果提供了强化学习所需的最低样本数量,我们讨论了它们与标准PAC-型RL样本复杂性和逐个教学的样本复杂性结果的联系。我们的教学算法有可能在有帮助教师的应用程序中加快RL代理的学习速度。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员