This paper asks whether promotional Twitter/X bots form behavioural families and whether members evolve similarly. We analyse 2,798,672 tweets from 2,615 ground-truth promotional bot accounts (2006-2021), focusing on complete years 2009 to 2020. Each bot is encoded as a sequence of symbolic blocks (``digital DNA'') from seven categorical post-level behavioural features (posting action, URL, media, text duplication, hashtags, emojis, sentiment), preserving temporal order only. Using non-overlapping blocks (k=7), cosine similarity over block-frequency vectors, and hierarchical clustering, we obtain four coherent families: Unique Tweeters, Duplicators with URLs, Content Multipliers, and Informed Contributors. Families share behavioural cores but differ systematically in engagement strategies and life-cycle dynamics (beginning/middle/end). We then model behavioural change as mutations. Within each family we align sequences via multiple sequence alignment (MSA) and label events as insertions, deletions, substitutions, alterations, and identity. This quantifies mutation rates, change-prone blocks/features, and mutation hotspots. Deletions and substitutions dominate, insertions are rare, and mutation profiles differ by family, with hotspots early for some families and dispersed for others. Finally, we test predictive value: bots within the same family share mutations more often than bots across families; closer bots share and propagate mutations more than distant ones; and responses to external triggers (e.g., Christmas, Halloween) follow family-specific, partly predictable patterns. Overall, sequence-based family modelling plus mutation analysis provides a fine-grained account of how promotional bot behaviour adapts over time.
翻译:本文旨在探究推广型Twitter/X机器人是否形成行为家族,其成员是否呈现相似的演化模式。我们分析了来自2,615个已验证推广机器人账户(2006-2021年)的2,798,672条推文,重点关注2009至2020完整年度数据。每个机器人被编码为由七个类别化发布层行为特征(发布动作、URL、媒体、文本重复、话题标签、表情符号、情感)构成的符号块序列("数字DNA"),仅保留时序信息。通过非重叠分块(k=7)、块频率向量余弦相似度计算及层次聚类,我们识别出四个内在一致的行为家族:独特发布者、带URL的复制者、内容增殖者及信息贡献者。各家族共享行为核心特征,但在参与策略与生命周期动态(起始/中期/终结)上存在系统性差异。随后我们将行为变化建模为突变过程:在每个家族内部通过多序列比对(MSA)对齐序列,并将事件标注为插入、删除、替换、修改及保持。该方法量化了突变率、易变区块/特征及突变热点区域。删除与替换占主导地位,插入事件罕见,且突变特征谱系因家族而异——部分家族的突变热点集中于早期,其他家族则呈分散分布。最后我们验证预测价值:同家族机器人比跨家族机器人更频繁共享突变;亲缘关系更近的机器人比疏远机器人更易共享并传播突变;对外部触发事件(如圣诞节、万圣节)的响应遵循家族特异性且部分可预测的模式。总体而言,基于序列的家族建模与突变分析相结合,为推广型机器人行为随时间演化的精细机制提供了系统性解释。