Neural operators have emerged as powerful tools for learning mappings between function spaces, enabling efficient solutions to partial differential equations across varying inputs and domains. Despite the success, existing methods often struggle with non-periodic excitations, transient responses, and signals defined on irregular or non-Euclidean geometries. To address this, we propose a generalized operator learning framework based on a pole-residue decomposition enriched with exponential basis functions, enabling expressive modeling of aperiodic and decaying dynamics. Building on this formulation, we introduce the Geometric Laplace Neural Operator (GLNO), which embeds the Laplace spectral representation into the eigen-basis of the Laplace-Beltrami operator, extending operator learning to arbitrary Riemannian manifolds without requiring periodicity or uniform grids. We further design a grid-invariant network architecture (GLNONet) that realizes GLNO in practice. Extensive experiments on PDEs/ODEs and real-world datasets demonstrate our robust performance over other state-of-the-art models.
翻译:神经算子已成为学习函数空间之间映射的强大工具,能够高效求解不同输入和域上的偏微分方程。尽管取得了成功,现有方法在处理非周期性激励、瞬态响应以及定义在不规则或非欧几里得几何上的信号时仍面临困难。为此,我们提出了一种基于极点-残差分解的广义算子学习框架,该框架通过指数基函数增强,能够对非周期性和衰减动力学进行富有表现力的建模。基于此公式,我们引入了几何拉普拉斯神经算子(GLNO),它将拉普拉斯谱表示嵌入到拉普拉斯-贝尔特拉米算子的特征基中,从而将算子学习扩展到任意黎曼流形,无需周期性或均匀网格。我们进一步设计了一种网格不变网络架构(GLNONet),在实践中实现了GLNO。在偏微分方程/常微分方程和真实世界数据集上的大量实验表明,我们的模型相比其他最先进模型具有鲁棒的优越性能。