The Forward-Forward (FF) learning algorithm provides a bottom-up alternative to backpropagation (BP) for training neural networks, relying on a layer-wise "goodness" function with well-designed negative samples for contrastive learning. Existing goodness functions are typically defined as the sum of squared postsynaptic activations, neglecting correlated variability between neurons. In this work, we propose a novel goodness function termed dimensionality compression that uses the effective dimensionality (ED) of fluctuating neural responses to incorporate second-order statistical structure. Our objective minimizes ED for noisy copies of individual inputs while maximizing it across the sample distribution, promoting structured representations without the need to prepare negative samples.We demonstrate that this formulation achieves competitive performance compared to other non-BP methods. Moreover, we show that noise plays a constructive role that can enhance generalization and improve inference when predictions are derived from the mean of squared output, which is equivalent to making predictions based on an energy term. Our findings contribute to the development of more biologically plausible learning algorithms and suggest a natural fit for neuromorphic computing, where stochasticity is a computational resource rather than a nuisance. The code is available at https://github.com/ZhichaoZhu/StochasticForwardForward


翻译:前向-前向(FF)学习算法为训练神经网络提供了一种自下而上的反向传播(BP)替代方案,其依赖于逐层的“优良度”函数,并通过精心设计的负样本进行对比学习。现有的优良度函数通常定义为突触后激活值的平方和,忽略了神经元之间的相关变异性。在本研究中,我们提出了一种称为维度压缩的新型优良度函数,该函数利用波动神经响应的有效维度(ED)来纳入二阶统计结构。我们的目标是最小化单个输入噪声副本的ED,同时在样本分布上最大化该值,从而无需准备负样本即可促进结构化表征的形成。实验表明,该方法的性能与其他非BP方法相比具有竞争力。此外,我们证明噪声在计算中发挥建设性作用:当预测基于输出平方的均值(等效于基于能量项进行预测)时,噪声可增强泛化能力并改善推理性能。本研究为开发更具生物合理性的学习算法提供了新思路,并表明该方法天然适用于神经形态计算——在后者中,随机性被视为计算资源而非干扰因素。代码已开源:https://github.com/ZhichaoZhu/StochasticForwardForward

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年7月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员