The infection of respiratory coronavirus disease 2019 (COVID-19) starts with the upper respiratory tract and as the virus grows, the infection can progress to lungs and develop pneumonia. The conventional way of COVID-19 diagnosis is reverse transcription polymerase chain reaction (RT-PCR), which is less sensitive during early stages; especially if the patient is asymptomatic, which may further cause more severe pneumonia. In this context, several deep learning models have been proposed to identify pulmonary infections using publicly available chest X-ray (CXR) image datasets for early diagnosis, better treatment and quick cure. In these datasets, presence of less number of COVID-19 positive samples compared to other classes (normal, pneumonia and Tuberculosis) raises the challenge for unbiased learning of deep learning models. All deep learning models opted class balancing techniques to solve this issue; which however should be avoided in any medical diagnosis process. Moreover, the deep learning models are also data hungry and need massive computation resources. Therefore for quicker diagnosis, this research proposes a novel pinball loss function based one-class support vector machine (PB-OCSVM), that can work in presence of limited COVID-19 positive CXR samples with objectives to maximize the learning efficiency and to minimize the false predictions. The performance of the proposed model is compared with conventional OCSVM and existing deep learning models, and the experimental results prove that the proposed model outperformed over state-of-the-art methods. To validate the robustness of the proposed model, experiments are also performed with noisy CXR images and UCI benchmark datasets.


翻译:2019年(COVID-19)呼吸 Corona病毒(COVID-19)的感染始于上呼吸道,随着病毒的增长,感染可以进入肺部并发展肺炎。COVID-19的常规诊断方法是逆转转录聚合酶链反应(RT-PCR),这种反应在早期阶段不那么敏感;特别是如果病人是无症状的,可能会进一步引起更严重的肺炎。在这方面,提出了几个深层次学习模型,以便利用公开提供的胸部X射线(CXR)图像数据集确定肺部感染,用于早期诊断、更好的治疗和快速治愈。在这些数据集中,COVID-19阳性样本与其他类别(正常、肺炎和肺结核)相比数量较少,这增加了无偏见地学习深层学习模型的挑战。所有深层学习模型都选择了班级平衡技术来解决这个问题,但在任何医学诊断过程中都应避免。此外,深层学习模型也是数据饥饿的模型,需要大量计算资源。因此,为了更快的诊断,这项研究提出一个新的针球损失功能功能基于单级支持矢量机模型(PB-OC-SVMM)比其他类别(常规、肺肺炎和肺部)的样本比常规模型比重数据效率,这可以证明为最短的模型比重的实验进行。在实验中进行有限的实验。进行有限的实验,对CSLVVI进行有限的实验性研究。与CSLIVI的实验性研究,可以进行有限的实验性研究。与C-C-C-C-C-C-C-C-C-C-C-SV的实验性实验性实验性研究。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
2+阅读 · 2021年8月9日
VIP会员
相关VIP内容
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员