sktime is an open source, Python based, sklearn compatible toolkit for time series analysis developed by researchers at the University of East Anglia, University College London and the Alan Turing Institute. A key initial goal for sktime was to provide time series classification functionality equivalent to that available in a related java package, tsml. We describe the implementation of six such classifiers in sktime and compare them to their tsml equivalents. We demonstrate correctness through equivalence of accuracy on a range of standard test problems and compare the build time of the different implementations. We find that there is significant difference in accuracy on only one of the six algorithms, and this difference was to be expected. We found a much wider range of difference in efficiency. Again, this was not unexpected, but it does highlight ways both toolkits could be improved. PLEASE NOTE THIS PAPER IS NOT COMPLETE. It is a work in progress and we have pushed it early so that we can reference it in another paper. More to follow!
翻译:sktim 是一个开放源码, 以Python为基础, sklearn 兼容工具包, 供东安格利亚大学、伦敦大学学院和Alan Turing研究所研究人员开发的时间序列分析使用。 Sktim 的主要初始目标是提供相当于相关 java 软件包tsml 中可用的时间序列分类功能。 我们描述六个这样的分类器在 sktim 中的实施情况, 并将其与 Tsml 等值进行比较。 我们通过对一系列标准测试问题的准确性进行等同来显示正确性, 并比较不同执行的构建时间。 我们发现, 在六种算法中, 只有一种算法的准确性差异很大, 而这种差异是可以预期的。 我们发现效率差异范围要大得多。 此外, 这并非出乎意料, 但它确实强调了两种工具都可以改进的方法 。 请注意这个 PAPER 并不是 COMLTE 。这是一个进展中的工作, 我们已经提前推了它, 以便我们可以在另一份文件中引用它 。