Multi-Agent Path Finding (MAPF) for car-like robots, addressed by algorithms such as Conflict-Based Search with Continuous Time (CL-CBS), faces significant computational challenges due to expensive kinematic heuristic calculations. Traditional heuristic caching assumes that the heuristic function depends only on the state, which is incorrect in CBS where constraints from conflict resolution make the search space context-dependent. We propose \textbf{CAR-CHASE} (Car-Like Robot Conflict-Aware Heuristic Adaptive Search Enhancement), a novel approach that combines \textbf{conflict-aware heuristic caching} -- which caches heuristic values based on both state and relevant constraint context -- with an \textbf{adaptive hybrid heuristic} that intelligently switches between fast approximate and exact computations. Our key innovations are (1) a compact \emph{conflict fingerprint} that efficiently encodes which constraints affect a state's heuristic, (2) a relevance filter using spatial, temporal, and geometric criteria, and (3) an adaptive switching strategy with theoretical quality bounds. Experimental evaluation on 480 benchmark instances with varying agent counts (10 to 30) and obstacle densities (0\% and 50\%) demonstrates a geometric mean speedup of 2.46$\times$ over the baseline CL-CBS implementation while maintaining solution optimality. The optimizations improve success rate from 77.9\% to 84.8\% (+6.9 percentage points), reduce total runtime by 70.1\%, and enable solving 33 additional instances that previously timed out. Performance gains scale with problem complexity, reaching up to 4.06$\times$ speedup for challenging 30-agent obstacle scenarios. Our techniques are general and applicable to other CBS variants.
翻译:针对类车机器人的多智能体路径规划问题,现有算法如基于连续时间的冲突搜索方法,因昂贵的运动学启发式计算而面临显著的计算挑战。传统的启发式缓存假设启发函数仅依赖于状态,这在冲突搜索中并不成立,因为冲突解析引入的约束使搜索空间具有上下文依赖性。本文提出 \textbf{CAR-CHASE}(类车机器人冲突感知启发式自适应搜索增强),一种新颖方法,结合了 \textbf{冲突感知启发式缓存}——基于状态及相关约束上下文缓存启发值——与 \textbf{自适应混合启发式},智能地在快速近似计算与精确计算之间切换。我们的核心创新包括:(1) 紧凑的 \emph{冲突指纹},高效编码影响状态启发值的约束;(2) 基于空间、时间及几何准则的相关性过滤器;(3) 具有理论质量保证的自适应切换策略。在480个基准实例上的实验评估(智能体数量10至30,障碍物密度0%和50%)显示,相比基线CL-CBS实现,几何平均加速比达到2.46$\times$,同时保持解的最优性。优化使成功率从77.9%提升至84.8%(增加6.9个百分点),总运行时间减少70.1%,并额外解决了33个先前超时的实例。性能增益随问题复杂度增加而提升,在具有挑战性的30智能体障碍场景中加速比最高达4.06$\times$。所提技术具有通用性,可应用于其他冲突搜索变体。