Complex natural language understanding modules in dialog systems have a richer understanding of user utterances, and thus are critical in providing a better user experience. However, these models are often created from scratch, for specific clients and use cases, and require the annotation of large datasets. This encourages the sharing of annotated data across multiple clients. To facilitate this we introduce the idea of intent features: domain and topic agnostic properties of intents that can be learned from the syntactic cues only, and hence can be shared. We introduce a new neural network architecture, the Global-Local model, that shows significant improvement over strong baselines for identifying these features in a deployed, multi-intent natural language understanding module, and, more generally, in a classification setting where a part of an utterance has to be classified utilizing the whole context.
翻译:对话系统中复杂的自然语言理解模块更深入地了解用户的语句,因此对于提供更好的用户经验至关重要。然而,这些模型往往是从零开始为特定客户和使用案例创建的,需要批注大型数据集。这鼓励多个客户共享附加说明的数据。为了促进这一点,我们引入了意向特征概念:只能从综合提示中学习的意向的域和专题不可知性特性,因此可以共享。我们引入了新的神经网络架构,即全球本地模型,该模型比在已部署的多功能自然语言理解模块中识别这些特征的强基线有显著改进,更一般地说,在分类环境中,必须利用整个背景对部分表达进行分类。