Deep learning has become popular because of its potential to achieve high accuracy in prediction tasks. However, accuracy is not always the only goal of statistical modelling, especially for models developed as part of scientific research. Rather, many scientific models are developed to facilitate scientific discovery, by which we mean to abstract a human-understandable representation of the natural world. Unfortunately, the opacity of deep neural networks limit their role in scientific discovery, creating a new demand for models that are transparently interpretable. This article is a field guide to transparent model design. It provides a taxonomy of transparent model design concepts, a practical workflow for putting design concepts into practice, and a general template for reporting design choices. We hope this field guide will help researchers more effectively design transparently interpretable models, and thus enable them to use deep learning for scientific discovery.


翻译:深层学习因其具有在预测任务中实现高度准确性的潜力而变得很受欢迎,然而,准确性并不总是统计建模的唯一目标,特别是对于作为科学研究的一部分而开发的模型而言,相反,许多科学模型的开发是为了便利科学发现,我们想通过科学发现来抽象出一个人类可以理解的自然世界的代表性。不幸的是,深层神经网络的不透明限制了其在科学发现中的作用,创造了对可透明解释模型的新需求。这篇文章是透明模型设计的实地指南。它提供了透明模型设计概念的分类、将设计概念付诸实践的实用工作流程以及报告设计选择的一般模板。我们希望这一实地指南将有助于研究人员更有效地设计透明、可解释的模式,从而使他们能够利用深层次的学习进行科学发现。

0
下载
关闭预览

相关内容

Explanation:生物信息学。 Publisher:Oxford University Press。 SIT: http://dblp.uni-trier.de/db/journals/bioinformatics/
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年12月5日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员