Ensemble forecasting is, so far, the most successful approach to produce relevant forecasts with an estimation of their uncertainty. The main limitations of ensemble forecasting are the high computational cost and the difficulty to capture and quantify different sources of uncertainty, particularly those associated with model errors. In this work we perform toy-model and state-of-the-art model experiments to analyze to what extent artificial neural networks (ANNs) are able to model the different sources of uncertainty present in a forecast. In particular those associated with the accuracy of the initial conditions and those introduced by the model error. We also compare different training strategies: one based on a direct training using the mean and spread of an ensemble forecast as target, the other ones rely on an indirect training strategy using an analyzed state as target in which the uncertainty is implicitly learned from the data. Experiments using the Lorenz'96 model show that the ANNs are able to emulate some of the properties of ensemble forecasts like the filtering of the most unpredictable modes and a state-dependent quantification of the forecast uncertainty. Moreover, ANNs provide a reliable estimation of the forecast uncertainty in the presence of model error. Preliminary experiments conducted with a state-of-the-art forecasting system also confirm the ability of ANNs to produce a reliable quantification of the forecast uncertainty.
翻译:在这项工作中,我们进行了玩具模型和最先进的模型实验,以分析人造神经网络(ANNs)在多大程度上能够模拟预测中存在的不同不确定性来源,尤其是那些与初始条件的准确性和模型错误所引入的不确定性相关的不确定性源。我们还比较了不同的培训战略:一个基于使用共同预测的平均值和分布作为目标的直接培训,另一个基于间接培训战略,利用分析状态作为从数据中隐含不确定性的目标。使用Lorenz'96模型的实验表明,ANNes能够模仿混合预测的某些特性,例如过滤最不可预测的模式和根据状态对预测不确定性进行量化。此外,ANNSs提供了可靠的预测不确定性预测预测的不确定性预测,并提供了可靠的预测模型。