We give an algorithm that computes exact maximum flows and minimum-cost flows on directed graphs with $m$ edges and polynomially bounded integral demands, costs, and capacities in $m^{1+o(1)}$ time. Our algorithm builds the flow through a sequence of $m^{1+o(1)}$ approximate undirected minimum-ratio cycles, each of which is computed and processed in amortized $m^{o(1)}$ time using a new dynamic graph data structure. Our framework extends to algorithms running in $m^{1+o(1)}$ time for computing flows that minimize general edge-separable convex functions to high accuracy. This gives almost-linear time algorithms for several problems including entropy-regularized optimal transport, matrix scaling, $p$-norm flows, and $p$-norm isotonic regression on arbitrary directed acyclic graphs.
翻译:我们给出了一种算法,计算以美元边缘和以美元为边际和以美元多元结合的整体需求、成本和能力为单位的定向图表上准确的最大流量和最低成本流量。我们的算法通过一个序列,即 $m ⁇ 1+o(1)}来构建流量,其中每个大约是非定向最低比率周期,使用新的动态图形数据结构以美元(1美元)美元计算和处理。我们的框架扩大到以美元+1+o(1)}美元运行的算法,用于计算流量,从而将一般边缘可分离的锥形功能降低到高度精确度。这为若干问题提供了几乎线性的时间算法,其中包括:以正统性最佳运输、矩阵缩放、美元-诺尔姆流动和以美元-诺尔姆为单位的任意定向环状图上以美元计算和美元-诺尔法回归。