Fast and automated inference of binary-lens, single-source (2L1S) microlensing events with sampling-based Bayesian algorithms (e.g., Markov Chain Monte Carlo; MCMC) is challenged on two fronts: high computational cost of likelihood evaluations with microlensing simulation codes, and a pathological parameter space where the negative-log-likelihood surface can contain a multitude of local minima that are narrow and deep. Analysis of 2L1S events usually involves grid searches over some parameters to locate approximate solutions as a prerequisite to posterior sampling, an expensive process that often requires human-in-the-loop domain expertise. As the next-generation, space-based microlensing survey with the Roman Space Telescope is expected to yield thousands of binary microlensing events, a new fast and automated method is desirable. Here, we present a likelihood-free inference (LFI) approach named amortized neural posterior estimation, where a neural density estimator (NDE) learns a surrogate posterior $\hat{p}(\theta|x)$ as an observation-parametrized conditional probability distribution, from pre-computed simulations over the full prior space. Trained on 291,012 simulated Roman-like 2L1S simulations, the NDE produces accurate and precise posteriors within seconds for any observation within the prior support without requiring a domain expert in the loop, thus allowing for real-time and automated inference. We show that the NDE also captures expected posterior degeneracies. The NDE posterior could then be refined into the exact posterior with a downstream MCMC sampler with minimal burn-in steps.
翻译:使用基于抽样的巴伊西亚算法(例如,Markov 链子蒙特-卡罗;MCMC)的单源(2L1S)微粒事件快速和自动推断有两个方面的挑战:利用微粒模拟码进行概率评估的计算成本高,以及一个负反向模拟表面可以包含大量狭义和深度的当地微粒的病理参数空间。对2L1S事件的分析通常涉及对一些参数进行网格搜索,以找到近似解决方案作为后方取样的先决条件,这是一个昂贵的过程,往往需要以人为主的滚动域域专门知识。随着罗马空间望远镜的下一代、基于空间的微粒调查,预计将产生数千个二进式微粒事件,一种新的快速和自动方法是可取的。在这里,我们展示了一个无概率的推断(LFIF)方法,名称为氨离子光线后光值估计,其中,一个神经密度估计器(NDE)在精确的正向内进行对正向后方的亚化后方位观测,在精确的轨道上进行直径对正值的正向内进行直径解的亚化的亚化的对正值的内,Sql=Sl=Sql==Sl=Sl的Sl的Sl=在精确的升前的升的升的升的升的升的测序前的测序中将显示。