Recent advancements in artificial intelligence have created transformative capabilities in image synthesis and generation, enabling diverse research fields to innovate at revolutionary speed and spectrum. In this study, we leverage this generative power to introduce a new paradigm for accelerating Magnetic Resonance Imaging (MRI), introducing a shift from image reconstruction to proactive predictive imaging. Despite being a cornerstone of modern patient care, MRI's lengthy acquisition times limit clinical throughput. Our novel framework addresses this challenge by first predicting a target contrast image, which then serves as a data-driven prior for reconstructing highly under-sampled data. This informative prior is predicted by a generative model conditioned on diverse data sources, such as other contrast images, previously scanned images, acquisition parameters, patient information. We demonstrate this approach with two key applications: (1) reconstructing FLAIR images using predictions from T1w and/or T2w scans, and (2) reconstructing T1w images using predictions from previously acquired T1w scans. The framework was evaluated on internal and multiple public datasets (total 14,921 scans; 1,051,904 slices), including multi-channel k-space data, for a range of high acceleration factors (x4, x8 and x12). The results demonstrate that our prediction-prior reconstruction method significantly outperforms other approaches, including those with alternative or no prior information. Through this framework we introduce a fundamental shift from image reconstruction towards a new paradigm of predictive imaging.


翻译:人工智能的最新进展在图像合成与生成领域创造了变革性能力,使多个研究领域能够以革命性的速度和广度进行创新。在本研究中,我们利用这种生成能力,提出了一种加速磁共振成像的新范式,实现了从图像重建到主动预测成像的范式转变。尽管磁共振成像已成为现代患者护理的基石,但其冗长的采集时间限制了临床通量。我们提出的新框架通过首先预测目标对比度图像来解决这一挑战,该预测图像随后作为数据驱动的先验信息用于重建高度欠采样的数据。这一信息丰富的先验由生成模型预测生成,该模型以多种数据源为条件,包括其他对比度图像、既往扫描图像、采集参数及患者信息等。我们通过两个关键应用验证该方法:(1) 利用T1w和/或T2w扫描的预测结果重建FLAIR图像;(2) 利用既往获取的T1w扫描的预测结果重建T1w图像。该框架在内部及多个公共数据集(总计14,921次扫描;1,051,904张切片)上进行了评估,包括多通道k空间数据,并针对一系列高加速因子(×4、×8和×12)进行了测试。结果表明,我们的预测先验重建方法显著优于其他方法,包括采用替代先验或无先验信息的方法。通过该框架,我们实现了从图像重建到预测成像新范式的根本性转变。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员