This paper contributes with a new formal method of spatial discretization of a class of nonlinear distributed parameter systems that allow a port-Hamiltonian representation over a one dimensional manifold. A specific finite dimensional port-Hamiltonian element is defined that enables a structure preserving discretization of the infinite dimensional model that inherits the Dirac structure, the underlying energy balance and matches the Hamiltonian function on any, possibly nonuniform mesh of the spatial geometry.
翻译:本文为非线性分布参数系统的一类非线性分布参数系统提供了一种新的正式空间分解方法,允许港口-Hamiltonian代表一个维元体。 定义了一个特定的有限度港口-Hamiltonian元素,该元素能够使继承Dirac结构、基本能量平衡和汉密尔顿函数与空间几何中任何可能不统一的网格相匹配的无限维模型保持分解结构。